CONFERENCIA IV PDF Print E-mail
16:00-17:00 Ery Arias Castro (Joint work with Bruno Pelletier, Université Rennes II, France)
(1 h)

Converxencia en maximum variance unfolding


Resumo

Maximum Variance Unfolding (MVU) is one of the main methods for nonlinear dimensionality reduction. We study its large-sample limit under standard assumptions. We find that it is consistent when the underlying submanifold is isometric to a convex subset. In other cases, we provide some simple examples where it fails to be consistent.

 

Descargue aquí a presentación.